Ribbon Operators and Hall-Littlewood Symmetric Functions

نویسنده

  • Mike Zabrocki
چکیده

Abstract. Given a partition λ = (λ1, λ2, . . . λk), let λ rc = (λ2 − 1, λ3 − 1, . . . λk − 1). It is easily seen that the diagram λ/λ is connected and has no 2 × 2 subdiagrams which we shall refer to as a ribbon. To each ribbon R, we associate a symmetric function operator S. We may define the major index of a ribbon maj(R) to be the major index of any permutation that fits the ribbon. This paper is concerned with the operator H 1 = ∑ R q S where the sum is over all 2 ribbons of size k. We show here that H 1 has truly remarkable properties, in particular that it is a Rodriguez operator that adds a column to the Hall-Littlewood symmetric functions. We believe that some of the tools we introduce here to prove

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ribbon Tableaux, Hall-littlewood Functions and Unipotent Varieties

We introduce a new family of symmetric functions, which are defined in terms of ribbon tableaux and generalize Hall-Littlewood functions. We present a series of conjectures, and prove them in two special cases.

متن کامل

Ribbon Schur operators

A new combinatorial approach to the ribbon tableaux generating functions and q-Littlewood Richardson coefficients of Lascoux, Leclerc and Thibon [10] is suggested. We define operators which add ribbons to partitions and following Fomin and Greene [4] study non-commutative symmetric functions in these operators. This allows us to give combinatorial interpretations for some (skew) q-Littlewood Ri...

متن کامل

Ribbon tableaux, ribbon rigged configurations and Hall-Littlewood functions at roots of unity

Hall-Littlewood functions indexed by rectangular partitions, specialized at primitive roots of unity, can be expressed as plethysms. We propose a combinatorial proof of this formula using Schilling’s bijection between ribbon tableaux and ribbon rigged configurations.

متن کامل

q-Analogs of symmetric function operators

For any homomorphism V on the space of symmetric functions, we introduce an operation that creates a q-analog of V . By giving several examples we demonstrate that this quantization occurs naturally within the theory of symmetric functions. In particular, we show that the Hall-Littlewood symmetric functions are formed by taking this q-analog of the Schur symmetric functions and the Macdonald sy...

متن کامل

Noncommutative Symmetric Hall-Littlewood Polynomials

Noncommutative symmetric functions have many properties analogous to those of classical (commutative) symmetric functions. For instance, ribbon Schur functions (analogs of the classical Schur basis) expand positively in noncommutative monomial basis. More of the classical properties extend to noncommutative setting as I will demonstrate introducing a new family of noncommutative symmetric funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008